

-

11-6

APPèL

Quantitative contrast-enhanced ultrasound imaging of breast cancer

Massimo Mischi

Eindhoven University of Technology

FU/e EINDHOVEN UNIVERSITY O TECHNOLOGY

Breast cancer

Leading Sites of New Cancer Cases and Deaths 2022 Estimates

Incidence:

no. 1 for cancer cases in women (31%)

Mortality:

no. 2 for cancer deaths in women (15%)

	Female		
	Breast	287,850	31%
	Lung & bronchus	118,830	13%
7	Colon & rectum	70,340	8%
	Uterine corpus	65,950	7%
	Melanoma of the skin	42,600	5%
	Non-Hodgkin lymphoma	36,350	4%
	Thyroid	31,940	3%
	Pancreas	29,240	3%
	Kidney & renal pelvis	28,710	3%
	Leukemia	24,840	3%
	All sites	934,870	

Female

<u>Lung & b</u> ronchus	61,360	21%
Breast	43,250	15%
Colon & rectum	24,180	8%
Pancreas	23,860	8%
Ovary	12,810	4%
Uterine corpus	12,550	4%
Liver & intrahepatic bile duct	10,100	4%
Leukemia	9,980	3%
Non-Hodgkin lymphoma	8,550	3%
Brain & other nervous system	7,570	3%
All sites	287,270	

Diagnostics and screening

Screening by mammography + lesion biopsy

12% suspicious of which 4% positive \rightarrow many unnecessary biopsies

MRI advised for high-risk groups

Complemented by B-mode ultrasound

¹ Zhi et al. Academic Radiology 2010
² Stanzani et al. Clinics 2014
³ Wang et al. European Radiol 2016
⁴ Zhao et al. OncoTargets and Therapy 2017
⁵ Kapetas et al. Invest Radiol 2019

⁶ Li et al. UMB 2020

Challenge: lesion classification

- Elastography¹
- Doppler²
- CEUS^{3,4}
- Multiparametric^{5,6}

Objective: CEUS imaging of breast cancer

Rationale: cancer growth requires angiogenesis

Angiogenic microvasculature shows increased

- Density
- Tortuosity
- Irregularity
- Arteriovenous shunting

Cancer angiogenesis

Folkman et al. *Nature*Brawer et al. *J Cell Biochem*Weidner et al. *Am J Pathology*Russo et al. *BJU Int*

CEUS features of breast cancer

CEUS enhancement pattern	Malignant, n (%)	Benign, n (%)	χ²	Р
Distribution of contrast agent*			44.389	0.000
Homogeneous	3 (6.8)	46 (62.2)		
Heterogeneous	37 (84.1)	22 (29.7)		
Partial enhancement with perfusion defect	3 (6.8)	2 (2.7)		
Contour enhancement	1 (2.3)	4 (5.4)		
Enhancement time*			22.300	0.000
Earlier	39 (88.6)	34 (45.9)		
Synchronous	5 (11.4)	38 (51.4)		
Later	0	2 (2.7)		
Enhanced intensity*			58.257	0.000
Hypo-enhancement	1 (2.2)	19 (25.7)		
Iso-enhancement	5 (11.4)	44 (59.5)		
Hyper-enhancement	38 (86.4)	11 (14.9)		
Enhanced area enlargement*			67.266	0.000
None	2 (4.5)	61 (82.4)		
Yes	42 (95.5)	13 (17.6)		
Presence of radial or penetrating vessels*			58.092	0.000
None	6 (13.6)	63 (85.1)		
Yes	38 (86.4)	11 (14.9)		
Margin of enhanced lesion*			34.415	0.000
Clear	6 (13.6)	40 (54.1)		
Less clear	12 (27.3)	26 (35.1)		
Unclear	26 (59.1)	8 (10.8)		

Heterogenous/irregular hyperenhancement

→ malignancy

Comparison of enhancement patterns between benign and malignant breast lesions.

Table 1

Enhancement patterns	Benign $(n=41)$	Malignant (<i>n</i> = 86)	P value
Enhancement degree			< 0.001
Hypo-enhancement/iso-enhancement	33(80.5%)	32(37.2%)	
Hyper-enhancement	8(19.5%)	54(62.8%)	
Enhancement order			< 0.001
Centrifugal/diffused	31(75.6%)	26(30.2%)	
Centripetal	10(24.4%)	60(69.8%)	
Internal homogeneity			< 0.001
Homogeneous	29(70.7%)	22(25.6%)	
Heterogeneous	12(29.3%)	64(74.4%)	
Enhancement margin			< 0.001
Well defined	25(61.0%)	18(20.9%)	
Poorly defined	16(39.0%)	68(79.1%)	
Enhancement shape			0.021*
Regular	16(39.0%)	17(19.8%)	
Irregular	25(61.0%)	69(80.2%)	
Perfusion defects			< 0.001
Absent	36(87.8%)	45(52.3%)	
Present	5(12.2%)	41(47.7%)	
Surrounding vessels			< 0.001
Absent	33(80.5%)	33(38.4%)	
Present	8(19.5%)	53(61.6%)	
Diameter			0.003
Not enlarged	35(85.4%)	51(59.3%)	
Enlarged	6(14.6%)	35(40.7%)	

*, statistical significance. CEUS, contrast-enhanced ultrasound.

Liu et al. Gland Surgery 2019

* Enhancement shape (*P*=0.021) will not be significant after Bonferroni Correction.

Wang et al. European Radiol 2016

15 years of research on prostate cancer...

Contrast Ultrasound Dispersion Imaging (CUDI)

Cancer angiogenesis

Time intensity curves

Convective dispersion modeling

 $\partial_t C = \nabla \cdot \mathbf{D} \nabla C - \vec{\nu} \cdot \nabla C$ $C(t) = \alpha \sqrt{\frac{\kappa}{2\pi t}} \exp\left(-\frac{\kappa}{2t} (t-\mu)^2\right)$

Dispersion map 🔶 Microvascular architecture

Contrast Ultrasound Dispersion Imaging (CUDI)

Cancer angiogenesis

Dispersion estimators

Kuenen *et al. IEEE T-MI*Mischi *et al. IEEE T-UFFC*Kuenen *et al. IEEE UMB*Kuenen *et al. IEEE T-UFFC*Kuenen et al. *IEEE T-BME*Schalk et al. *IEEE T-UFFC*Schalk *et al. IEEE T-BME*van Sloun et al. *Med Im Analysis*van Sloun et al. *IEEE T-MI*Wildeboer et al. *IEEE T-MI*

Convective dispersion modeling

 $\partial_t C = \nabla \cdot \mathbf{D} \nabla C - \vec{v} \cdot \nabla C$ $C(t) = \alpha \sqrt{\frac{\kappa}{2\pi t}} \exp\left(-\frac{\kappa}{2t} (t - \mu)^2\right)$

Dispersion map 🚧 Microvascular architecture

Contrast Ultrasound Dispersion Imaging (CUDI)

Dispersion maps

Histology

CUDI targeted biopsies

Biopsies targeted by CUDI compared to systematic biopsy and mpMRI targeted biopsies in <u>142 patients</u>

Detection rates csPCa: SBx = 39% (56/142) mpMRI-TBx = 29% (41/142) CUDI-TBx = 28% (40/142)

Mannaerts et al. BJUI 2020

2D multiparametric ultrasound (mpUS)

Mannaerts et al. BMC Urology 2018

Mannaerts et al. J Urology 2019

Multiparametric ultrasound in the detection of prostate cancer: a systematic review

Arnoud Postema · Massimo Mischi · Jean de la Rosette · Hessel Wijkstra

World J Urol (2015) 33:1651-1659

1

GSU, C-TRUS, DCE-US and SWE are expected to show improved results in the near future. By effectively combining these ultrasound techniques, all targeting different properties of malignant tissue, a valuable clinical tool with all the advantages of ultrasound could be constructed. The literature shows that combining ultrasound modalities in a crude fashion can already improve sensitivity by 13–59 %.

DCE-US	Seitz et al. [33]	35	DCE-US versus RP and RCP	69	33	84	18
	Unpublished data from AMC	36	DCE-US + GSU versus RP	58–69	93–95		
	Unpublished data from AMC	11	Semiquantative DCE-US + GSU versus RP	87	84		
	Jung et al. [41]	20	Semiquantitative DCE-US versus RP	88	100		
SE	Zhang et al. [44]	508	Meta-analysis of 7 studies: SE versus RP	72	76		
	Teng et al. [45]	527	Meta-analysis: SE-targeted biopsy versus systematic biopsy	62	79		
SWE	Ahmad et al. [49]	50	Per ROI SWE versus 12 biopsies	90–93	88–93	93–98	83-81
	Barr et al. [48]	53	Per ROI SWE versus 12 biopsies	96	96	69	100

48 patients B-Mode, CUDI, SWE

Automatic zonal segmentation by deep learning

van Sloun et al. Eur Urol Focus 2019

2D multiparametric ultrasound (mpUS)

Machine learning

(Random forest classifier)

48 patients

B-Mode, CUDI, SWE

Mannaerts et al. *BMC Urology* 2018 Mannaerts et al. *J Urology* 2019

Mode	de Parameter ROC-AUC per regi		Cper region
		≥3+3	>3+4
B-mode	G, gray level	0.53	0.58
SWE	E, Young's modulus	0.62	0.73
DCE-US	<i>v</i> , contrast velocity (mm/s)	0.69	0.76
	r, similarity dispersion(-)	0.69	0.76
	PT, time to peak (s)	0.63	0.68
	Multi-Radiomic <i>v</i>	0.71	0.84
RF-classifier	Multiparametric score	0.75	0.90

Wildeboer et al. Eur Radiol 2019

3D CUDI

Advantages

- Entire gland in one go
- Faster clinical workflow
- Complete kinetic modeling

Schalk et al. *IEEE T-UFFC* 2015; Schalk et al. *UMB* 2018 Wildeboer et al. *IEEE T-MI* 2018; Wildeboer et al. *UMB* 2019

Vascular reconstruction by tractography

van Sloun et al. Nature Scientific Reports 2018

3D mpUS: prediction of biopsy outcome

54 patients compared to 12-core SBx

Features

- B-Mode LogiqE9 (RIC9-5 probe)
- CUDI LogiqE9 (0.3 Hz, MI = 0.1, 2.4 mL SonoVue)
- SWE Aixplorer (multiplane 3D reconstruction)

Chen et al. IEEE IUS 2021

3D mpUS: prediction of biopsy outcome

54 patients compared to 12-core SBx

Features

- B-Mode
- CUDI
- SWE

Chen et al. *Euroson* 2022

Machine learning (Gradient boosting)

	ROC curve area*
CUDI	0.81 ± 0.12
SWE	0.66 ± 0.12
CUDI + SWE	0.85 ± 0.11

*9-fold cross validation

Breast cancer data – 2D CEUS

B-mode

CEUS

- 120 patients (18-82 years, average: 52 years)
- B-Mode + CEUS + biopsy
- October 2015 September 2016

CEUS setting

- Siemens Acuson S3000
- Linear transducer (9L4HD)
- CPS at 4 MHz
- MI ≤ 0.07
- 4.8-mL bolus of SonoVue

Enhancement heterogeneity

Benign breast lesion with low enhancement heterogeneity

Malignant breast lesion with high enhancement heterogeneity

CEUS enhancement grade

Grade 1, Hyper-enhanced

Grade 2, Partly enhanced

Quantitative enhancement grading

- Enhancement ratio*
- Average enhancement*

*At peak enhancement

Grade 3, Poorly enhanced

Grade 4, Hypo-enhanced

CUDI spatiotemporal analysis of CEUS loops

Similarity between time intensity curves (TICs)

1.5 cm imes 1.5 cm

CUDI spatiotemporal analysis of CEUS loops

Similarity between time intensity curves (TICs)

Spectral coherence (ho)

Mischi et al. *IEEE TUFFC* 2012 Kuenen et al. *UMB* 2013

Correlation coefficient (*r***)**

Kuenen et al. IEEE TUFFC 2013

Mutual information (I)

Schalk et al. IEEE TBME 2016

$$I = \sum_{c \in Q} \sum_{\boldsymbol{x} \in \boldsymbol{Q}} P_{\boldsymbol{X},C}(\boldsymbol{x},c) \log \left(\frac{P_{\boldsymbol{X},C}(\boldsymbol{x},c)}{P_C(c)P_{\boldsymbol{X}}(\boldsymbol{x})} \right)$$

Conditional entropy (H)

$$H = -\sum_{c \in Q} \sum_{\mathbf{x} \in \mathbf{Q}} P_{\mathbf{X},C}(\mathbf{x},c) \log\left(\frac{P_{\mathbf{X},C}(\mathbf{x},c)}{P_{\mathbf{X}}(\mathbf{x})}\right)$$

Results - Mutual Information

6-mm benign ductal hyperplasia in a 60-year-old woman

10-mm malignant invasive ductal carcinoma in a 43-year-old woman

Results - pixel level classification

1.2

0.8

0.8

1

T

mation (1)							
benign n = 17 malignant n = 28	Statistics of parameter difference at the pixel level						
		Parameter	Benign	Malignant	p valu		
-		Correlation coefficient (r)	0.115 ± 0.077	0.088 ± 0.082	0.043		
-	Patients of	Spectral coherence ($ ho$)	0.478 ± 0.201	0.416 ± 0.222	0.127		
	grade 1 (45/120)	Mutual information (I)	0.547 ± 0.253	0.478 ± 0.201	<0.00		
1 1.2 mation (I) benign n = 23 malignant n = 41		Conditional entropy (H)	5. 263 ± 0.357	5.525 ± 0.315	<0.00		
		Correlation coefficient (r)	0.103 ± 0.076	0.085 ± 0.080	0.189		
	Grouped patients of	Spectral coherence ($ ho$)	0.441 ± 0.208	0.412 ± 0.216	0.362		
	grade 1 or 2 64/120	Mutual information (I)	0.473 ± 0.266	0.322 ± 0.252	0.002		
		Conditional entropy (H)	5.351 ± 0.359	5.543 ± 0.299	0.002		
-			± 0.359	± 0.299			

p value

< 0.001

< 0.001

Results - Lesion classification

Table 3 Comparison of diagnostic performance of spatiotemporal parameters							
	Parameter	Sensitivity (95% CI)	Specificity (95% CI)	AUC	P value		
	Correlation coefficient (r)	89.3% (72.5 96.9)	64.7% (40.5 86.7)	0.743	0.010		
Lesions of grade 1	Spectral coherence ($ ho$)	67.9% (48.3 82.7)	82.3% (57.3 100)	0.724	0.015		
(45/120)	Mutual information (I)	85.7% (68.2 96.4)	94.4% (68.8 100)	0.893	<0.001		
	Conditional entropy (H)	78.6% (60.8 92.9)	88.2% (41.7 100)	0.874	<0.001		
	Correlation coefficient (r)	80.5% (66.7 90.5)	66.5% (37.8 75.0)	0.704	0.008		
Grouped lesions of grade 1 or 2	Spectral coherence ($ ho$)	63.4% (48.2 76.3)	75.9% (53.0 91.7)	0.670	0.034		
(64/120)	Mutual information (I)	90.2% (79.6 97.5)	82.6% (61.2 94.5)	0.848	<0.001		
	Conditional entropy (H)	78.1% (62.6 89.7)	78.3% (56.0 90.0)	0.817	<0.001		

Conclusions

- CUDI spatiotemporal analysis of enhancing breast lesions (64/120) shows good classification performance, especially by mutual information (AUC=84.8%, Se=90.2%, Sp=82.6%)
- More quantitative parameters should be evaluated that reflect the complex perfusion patterns in breast lesions
- Hypoenhancing lesions call for a multiparametric approach involving other complementary features (texture, geometry, stiffness)

• 3D CEUS is expected to provide more accurate classification with motion compensation

Thank you!

Special acknowledgements:

Panagiotis Kapetas (Medical University of Vienna) Chuan Chen (Eindhoven University of Technology) Simona Turco (Eindhoven University of Technology) Hessel Wijkstra (Eindhoven University of Technology) Chris de Korte (Radboudumc) Ritse Mann (Radboudumc)

Ruud van Sloun

(TU/e)

PhD students

(TU/e)

Maarten Kuenen Stefan Schalk (TU/e)

(TU/e)

Rogier Wildeboer (TU/e)

Peiran Chen (TU/e)

(AMC)

(TU/e - JBZ)

Christophe Mannaerts Auke Jager (AMC) (AMC)

Arnoud Postema (AMC)

-

11-6

APPèL